
CS5478: Intelligent Robots Project Report - Group 5

Aishik Pyne
A0250592E

e0945774@u.nus.edu

Niharika Shrivastava
A0254355A

e0954756@u.nus.edu

1 System Design

Figure 1: Duckietown System Architecture. The arrows are inten-
tions F, L, R and the x-axis is the tiles visited during the journey

The system design, as seen in Figure 1 consists of 3 controllers
- Alignment Controller, Lane Following Controller, Localization
module (Goal-Reaching Controller), and 1 high-level planner. For
each milestone, for the first 2 tiles, the aligner makes sure the
agent reaches the right lane, after which the high-level planner
generates a plan for the Lane Following Controller to reach the
goal tile. Finally, the Localization module guides the agent toward
the restaurant with the duck. In the following sections, we describe
and justify our design choices.

2 State Encoding
At test time the agent has access to:

1. Observation: RBG image from front camera of size (160 ×
120 × 3).

2. Intention: Instruction from High-Level controller of the form
Forward, Left, Right to guide the Lane following controller.

3. Intention Time-step: An artificially created state which
counts the time spent by the agent in one tile. At the start of
each tile 𝑡 = 0 and at each timestep, 𝑡 grows by 0.01 till 𝑡 = 1.
This acts as a historical information encoding variable.

3 Aligner
3.1 Analysis of Start tile
After multiple manual simulations, empirical observations were
made about the starting position of the agent.

1. The agent can start in either the right lane or the left lane.
It might or might not be facing a lane. In extreme cases, it
might not even have any information like yellow lanes, white
lanes or red lines, such as looking at grass or at a junction.

2. There is a huge penalty when the agent is driving in the left
lane. The objective is to move over to the right lane as quickly
as possible without going off the road.

3.2 Alignment Controller
Since the objective is to merge into the right lane, we need no inten-
tion. We use a mix of the provided basic lane follower (AdaComp,
) and our trained LaneFollower (described later). For the first few
𝑡 <= 0.05 timesteps we use the given lane follower because when
it is too close to the edge or it is facing the grass, it does tank turns.
After this, our trained lane follower is capable to recover into a
lane.

4 High Level Planner

Figure 2: Sample High
Level Plan. Triangle =
Start. Cross = Goal.
Squares are the paths where
colours signify intentions

The High-Level Planner performs
global planning to find the shortest
path from the 3rd tile to the goal
tile using the A* algorithm. As
the heuristic, the Manhattan dis-
tance is used, and the cost to come
was set to 1 for each neighbour.
Note that multiple shortest paths
can exist for a particular milestone
because of loops in the map.

However, we can play to
the Lane Following controller’s
strengths to choose from the set of
shortest paths. We have observed
that the LaneFollowing controller
can move faster and collect more
rewards when moving forward
compared to turns. Moreover, left
turns consistently incur less penalty than taking right turns. Thus
while expanding the node we add additional cost based on Inten-
tion used to expand the node: 1 for Forward, 2 for Left, and 4 for
Right

5 Lane Follower
The lane follower module in Figure 3 is a data-driven controller.
We use Behaviour Cloning to learn a Neural Network that maps
Observations and Intentions directly to Actions by mimicking an
expert.

5.1 Designing an Expert
During training time we have access to the ground truth infor-
mation from the environment. This can be used to develop a



Figure 3: Lane Following Controller using Imitation Learning

model-based controller and use that as an expert. This is conve-
nient because this would not require collecting data manually. In
our case, we use a PurePursuit Controller as the expert.

At each time step, the controller calculates the closest point to
the right lane and looks ahead on that lane to find a point to pursue.
Then it calculates a vector towards that point and the angle of that
vector w.r.t the orientation of the agent is used as 𝜔. The velocity
𝑣 is chosen such that it is inversely correlated to 𝜔. This means
when the deviation is high, it should mostly turn instead of moving
forward.

During turns, however, the Pure pursuit controller needs to be
modified. After empirically trying out multiple magic values,
we designed intention-conditioned generic control values which
swerve the agent into the intended path. The adaptive control uses
the Intention timestep to control the 𝜔.

5.2 Neural Net Architecture
The Neural-net first uses a ResNet-50 pre-trained on ImageNet
data to extract features from the Observation. This produced
a 2048 long feature vector, which is passed through a Lin-
ear+LeakyReLU layer to out a 128 sized vector. The Intention is
one-hot encoded and concatenated with the Intention Timestep to
form the Intention tuple e.g. [0, 1, 0, 0.140]. Since the Intention
tuple is length 4, it is repeated 32 times to make it size 128. Finally,
these two feature vectors are concatenated and passed through a
final Linear layer which produces the regression output [𝑣, 𝜔]. 𝑣
is passed though Sigmoid and 𝜔 through TanH.

5.3 Training using DAgger
Classical Behavioural cloning sufferers from distribution shift.
Due to any errors, like prediction errors, if the agent takes a wrong
step and makes an error, it will compound the errors in the subse-
quent steps. To overcome this we use DAgger (Ross et al., 2011)
which during simulation uses a mix of expert and agent prediction
to generate trajectories, however when it deviates from the right
lane, the control goes to the expert which generates corrective
actions.

5.4 Inference
Although the learned network should have been able to take turns,
it at times gets confused and crashes. However, since it learned
how to follow a lane and recover into a lane very well, during
inference, if the initial few timesteps during a turn is injected with
some additional 𝛿𝜔 it can consistently make turns.

6 Localization Module
Our goal-reaching controller gets activated once we have reached
the high-level goal tile. The duckie building is expected to be
somewhere in this tile. In most cases, once we reach the tile, the
building is out of direct sight. Through observation of the given
test cases, there are 2 main cases:

• Building directly in front of the agent: In this case, in order
to reach close to the goal, the agent has to move forward
towards the building.

• Building needs to be found after exploring the goal tile:
In this case, the agent explores the tile by rotating in the
clockwise direction, detects the building, and moves forward
towards it.

In order to generalize the localization module, we make the
agent rotate in the clockwise direction till it finds an observation
where the duck building can be seen and then moves as close
as possible towards it. The duck building is detected using a
simple classification model based on Structural Similarity Scores
(Nilsson, 2020) which detects the similarity between the current
observation and a ground truth dataset containing images of the
duck-building in the goal tile.

We collect this dataset by storing the 360◦ observations of the
goal tile using all the maps. The dataset is then manually labelled
as (i) containing the duck building, and (ii) not containing the duck
building. During test time, once the agent has reached the discrete
goal tile, the agent (1) rotates and gets the observation at each turn,
(2) checks the SSIM score of the observation with the ground-truth
images (containing duck-building) and detects the building if the
score is above a certain confidence threshold 𝜆 (3) moves towards
it as close as possible using forward actions.

Since the dataset is small, we achieve a high score of 0.98-1,
however, the computation time is slightly high. We can further aug-
ment this classifier by replacing it with a more complex function
approximation such as a neural network, and perform inference on
this model to detect duck buildings.

7 Conclusions
The design of the Pure Pursuit model parameters was challenging.
This is because we wanted to optimize the speed and the reward
which is dependent 10 times more on the distance from the right
lane than the angle the bot makes with the track. We also tried
goal-conditioned RL using DDPG for lane following however,
the reward engineering was difficult. We observed that the agent
preferred to turn in one place and collect negative rewards rather
than risk going close to the edge which had a massive penalty.

References
[AdaComp, ] AdaComp. Adacompnus-cs4278-5478-project-

basic-lane-follower.

[Nilsson, 2020] Nilsson, J. (2020). Understanding ssim.

[Ross et al., 2011] Ross, S., Gordon, G. J., and Bagnell, J. A.
(2011). A reduction of imitation learning and structured
prediction to no-regret online learning. (arXiv:1011.0686).
arXiv:1011.0686 [cs, stat].


	System Design
	State Encoding
	Aligner
	Analysis of Start tile
	Alignment Controller

	High Level Planner
	Lane Follower
	Designing an Expert
	Neural Net Architecture
	Training using DAgger
	Inference

	Localization Module
	Conclusions

