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Problem Statement
Introduction

A popular skill and luck based gambling 
game

Texas Hold’em Poker

Winner get’s all chips

One Round of Poker

Modelling Poker in RL Setting 
• Partially Observable

• Multi-Agent Zero-Sum

• Extensive Form game

• Intractable State-Space: 1014



Introduction
Objectives

• Train fully competitive 
agent to play poker.


• Train agents which learn to 
cheat via collaborating. 


• Create a classifier which 
can detect agents that are 
cheating

Training Brain 1

Training Brain 2

p({B1, B2} |τ)



Brain 1: 
Training Fully  
Competitive Agents



Algorithm
Brain 1: Competitive Agents

Neural Fictitious Self PlayTraining Brain 1

Note: We use a 3 player setting 
despite the image.

Evaluation 

• NSFP consistently beats a Rule 
Based agent with win-ratio 3.65



Brain 2: 
Training 
Collaborative Agents



Training Brain 2

• Add context to the agents as 
to who their partner is by 
indicating which historical 
raises were made by the 
agent’s partner


• Update the reward function: 

• Either agent wins: Max Winning

• Both agents lose: Avg Loss 

• Freeze the competitive agents 
during training

Setup
Brain 2: Collaborative Agents

0 0 1 0 1

0 0 1 0 1
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Training and Results
Brain 2: Collaborative Agents
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Probability of Action 
Similarity among the 

Brains  

  

= 0.535

p(B1 = = B2) =
∑
i=j

Ai, j

∑ Ai, j



Discriminator: 
Detecting who is 
cheating



• 


• 


• Action Space is small


• State Space is intractable

fB1
(s) → a

fB2
(s) → a

Setup and Challenges
Discriminator

p({B1, B2} |τ)

Can we take advantage of small action 
space to create a discriminator which 
doesn’t enumerate the state space?



Discriminator Logic
N

o Inform
ation 

G
ain

Match B1 2 1 0
Match B2 0 0 2



• Pro:


• Con: Our discriminator assumes that in real life scenarios, agents 
who are cheating deploys strategies similar to strategies learned 
by our policy. However, this assumption can be broken at times.

Takeaways
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